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Aerodynamic Design of a Flying Wing
Using Response Surface Methodology

Natasha E. Sevant,* Malcolm I. G. Bloor," and Michael J. Wilson*
University of Leeds, Leeds, England LS2 9JT, United Kingdom

The design of a subsonic flying wing with maximized lift is considered. A novel method of surface generation,
known as the partial differential equation (PDE) method, is used to parameterize the flying wing. Because this
method is able to parameterize complex geometries in terms of a small number of shape parameters, the compu-
tational costs that are normally associated with optimal aerodynamic design are dramatically reduced. The lift
data, which are estimated using a low-order potential flow panel method, are subject to numerical noise and yield,
therefore, a design space that contains many spurious noise-induced local maxima. Standard methods of local
optimization are severely hampered by this noise and may converge prematurely in nonoptimal plateau regions
where the variation of the lift is small relative to that of the noise. To combat this inefficiency, techniques from
response surface methodology (RSM) are used to construct smooth analytic approximations of the noisy lift data,
which can be optimized successfully. This combination of the PDE method and RSM results in a design approach
that is both efficient and robust. Three flying-wing design problems are investigated, and the results are presented.

Nomenclature

a = smoothing parameter

C = reference length

C., G = total and section coefficients of lift

c = aerofoil camber

Cr, Ct = root and tip aerofoil chord lengths

dSg, dSy = surface elements on wing and wake

fX,B) = regression equation

Kp = parameter depending on position of P
relative to Sp

L, L = total lift and lift per unit span

M = number of regression parameters

N = number of response evaluations

n = order of Fourier mode or number of
independentdesign variables

n = unit normal vector

ng = number of center points in central
composite design

= point

r = distance between P and either dS or dSy

S = plan-area of wing or reference area

Sz, Sw = surfaces of the wing and the wake

Sy, S = derivative boundary condition scaling
parameters

t, b = Fourier coefficients of aerofoil thickness
distribution

u,v = parametric surface coordinates

Voo = far-field reference speed

X =(X,,...,X,) = independentdesign variables

x=(x,y,z2 = Cartesian coordinates

Xey Yes Ze = x, ¥, and z coordinates of cambered
template aerofoil

Xsy Vs» Zs = x, ¥, and z coordinates of symmetric
template aerofoil

X1y Vs = axial and spanwise positions of wing tip

X0, X, X, = functions of the parametric coordinate u

y = actual response values
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Vi = observed response values

D = predicted response values

a = geometric twist of tip aerofoil or central
composite design parameter

B={Bo, Bi, Bij} = regression parameters

oQ = boundary of parameter domain 2

n = expected or mean response

u = wing doublet strength distribution

g, L = wing and wake doublet strengths

up = doublet strength at point P

P = density

c = wing source strength distribution

op = wing source strength

D = velocity potential

Dp = velocity potential at point P

Do = onset velocity potential

P p = onset velocity potential at point P

Q = two-dimensional parameter domain

Introduction

ESPITE being unconventional, flying wings—which, as their

name suggests, consist of a solitary wing—are considered to
be a viable aircraft configuration. They were first conceived by Jack
Northrop in the late 1920s,! and in the aftermath of World War
I, the U.S. Air Force awarded a contract to Northrop’s company
to build a number of flying-wing bombers. Although this contract
was shortly cancelled, today there is a revival of interest in flying
wings for use as stealth aircraft (such as the Northrop B-2 bomber
and the British HALO bomber) and as advanced, fuel-efficientcargo
planes >3 In this paper the aerodynamicdesign of a simplified flying
wing with maximized subsonic lift is considered. It must be made
clear however that, because sufficient lift is only one of the many
factors to be considered when designingreal aircraft, the aim of this
paper is to illustrate the application of two innovative techniques
to aerodynamic design rather than to design a completely realistic
flying wing.

Direct numerical optimizationis an approach to aerodynamic de-
sign that involves coupling an aerodynamic analysis method with a
scheme for numerical minimization where the aim is the direct at-
tainmentof certain aerodynamic goals, such as maximum lift and/or
minimum drag. Unfortunately, however, direct numerical optimiza-
tion is computationally expensive; the principle source of this ex-
pense can be attributed to the repetitive executions of costly aerody-
namic analysismethods. Labrujére and Slooff* identify three major
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factors that warrant further consideration in attempts to make di-
rect numerical optimization more feasible. These factors are the
following: the choice of an objective function—subject to the ca-
pabilities of available analysis codes—that adheres to the design
requirements;a reduction in the number of design variables used to
describe the geometry of the aircraft; and the choice of an efficient
and robust optimization algorithm.

The second of these factors, a reduction in the number of de-
sign variables, has been considered in many applications of direct
numerical optimization. For example, Hicks and Henne® use a suc-
cessful two-dimensional aerofoil design technique (which uses a
linear combination of analytic shape perturbation functions) in the
design of a three-dimensionaltransonicwing. However, they remark
that the development of a more flexible wing parameterization is
necessary. A similar more sophisticated two-dimensional concept
was introduced by Aidala et al.,® which uses the aerofoil section
ordinate perturbation solutions (known as aerofunction shapes) of
inverse design problems. Although this technique allows a more ef-
fective choice of designer variables (because their aerodynamic in-
fluences are prescribed), the optimizer will be limited to a restricted
range of anticipated shapes. More recently, Hutchison et al.” have
developed a wing parameterization technique in which the number
of parameters are reduced by relating the aerofoil sections to the
wing planform according to standard aerodynamic practice. Again,
however, this method of parameterization may limit the optimizer
to a restricted range of anticipated shapes.

In this paper the flying wing is parameterized by using an alter-
native technique known as the partial differential equation (PDE)
method. This is a novel method of surface generation that is able to
parameterize complex surfaces efficiently without severely limiting
the range of available shapes. This low level of parameterization
and versatility in the range of available shapes enables direct nu-
merical optimization to be fully exploited without incurring large
computational costs.

The third factor identified by Labrujére and Slooff* for reducing
computational expense is the use of an efficient and robust method
of optimization. In this paper the subsoniclift data, which are calcu-
lated using a low-order potential flow panel method, contain noise.
The objective function (i.e., the lift) displays, therefore, a jagged
variation with the wing design parameters. This noise can cause a
standard method of optimization to be inefficient and, also, to con-
verge prematurely to a noise-induced maximum (particularly if the
variation of the objective functionis small compared with that of the
noise). To combat these problems, techniquesfrom response surface
methodology are used to construct smooth analytic approximations
(known as response surfaces) of the noisy objective function, which
can then be optimized using any standard method of optimization.

PDE Method

The PDE method is an innovative method of surface genera-
tion, which was devised by Bloor and Wilson.® This method has
been used to design many surfaces of practical significance, such
as generic aircraft geometries,”'° a wing-body combination,'! and
marine propellers.'

In the PDE method a surface is given by a parametric function
x(u,v) defined over a domain €2 in two-dimensional (u, v) param-
eter space. Such a function is obtained as the solution of an elliptic
PDE subject to boundary conditions specified around the edge 002
of the domain £2. Much of the previous work has been based upon
the following fourth-order elliptic PDE:

LAY
(au2 +a aV2>x—0 (D)
where a (which controls the relative scaling between the u and v
parametric directions) is known as the smoothing parameter and the
boundaryconditionsusually specify how x and its normal derivative
ox/on (which controls the direction and speed of departure of the
surface from its boundaries) vary along 0£2.

Many surfaces can be represented by a looped surface patch
bounded by two closed curves or can be constructed from a col-

lection of such patches. For surfaces such as these, it is convenient
to choose one of the parameters, u say, to vary as the surface sweeps
from one boundary curve to the other, whereas the other parameter
v varies around the patch. Choosing the v interval to be [0, 2 7]
yields a parametric functionx(u, v) with a period of 27 in v, which
can thus be expressed in terms of a Fourier series expansion, as
follows:

x(u,v) =xo(u) + Zx;(u)cos nv + in(u)sin nv )

n=1 n=1

where the components of the vectors xo, x;,, and x; are functions of
u. Substituting this Fourier series expansion into Eq. (1) yields an
uncoupled series of identical linear homogeneous ordinary differ-
ential equations for the functions x,, x{ (#), and x; (u)—each with
a solution that is dependent upon the relevant Fourier mode of the
boundary conditions. For more general boundary conditions, which
cannot be expressed exactly as finite Fourier series, Bloor and Wil-
son have developed a rapid approximate method of solution.'?

Wing Geometry

A simple cambered template aerofoil, of unit chord length, can
be represented by the following Fourier series:

[x.(v), x.(v), x.(v)] = [% cosv, 0, t; sinv

+1y5in2v + (¢/2)(1 = cos 2v) ] 3)

where v varies in the range 0 <v <2z . The Fourier coefficients f
and t, define the thickness distribution of the aerofoil, whereas the
parameter ¢ controlsthe amount of camber. Choosing this camber to
be zero yields a symmetric template aerofoil, for which the camber-
denoting subscript ¢ is replaced by s to denote symmetry.

The positionalboundary conditionsrequired to generate a twisted
flying wing with a cambered root aerofoil and a symmetric tip aero-
foilcanbe formed by scaling, translating,and rotating these template
aerofoils, as follows:

xe(u)
x(0,v) =c, 0
Ze(u)
X, x;(u)cosa + z,(u)sin o
x(L,vy=|»|+c 0 (4a)
0 zg(u)cosa — xy(u)sin o

where the parameter u is taken to be zero at the wing root and unity
at the wing tip and y, is the wing semispan.
The derivative boundary conditions are taken to be

0
x,(0,v) =1 sr
0

x,(u)cosa + z,(u)sin
x,(1,v) = =5, 0 (4b)
z,(u)cos a — x (u)sin o

where the magnitudesof parameterss, and s, control the speed with
which the surface departs from its boundary curves and their sign
determines the direction of departure. These derivative boundary
conditions are such that the flying wing is the tangent plane con-
tinuous both across its plane of symmetry y =0 and with the plane
y =Y, defined by its tip aerofoil.

The wing surface can now be found by the solution of Eq. (1)
subject to the boundary conditions (4a) and (4b). Figure 1 illus-
trates a baseline flying wing that has the following parameter values:
t; =0.05, 1, =-0.02, ¢ =0, ¢, =5.0, ¢, =1.0, x, =0.0, y, =10.0,
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Fig. 1 Baseline flying wing.

a=0deg, s, =20.0,s, =5.0,anda =2.1183 [where the smoothing
parameter a was determined using a bisection search such that the
planarea of the semispan wing, as given by Eq. (5), is equal to 40.0].

In the wing design problems to be considered, the sweep pa-
rameter x,, the derivative boundary condition parameters s, and s,,
and the smoothing parameter a of the surface-generating PDE are
permitted to vary. Certain bound constraints need to be imposed
on these parameters in order to maintain sensible geometries. For
example, to ensure the intended direction of departure of the wing
from the root and tip boundary aerofoils, both the parameters s, and
s, must be greater than or equal to zero. It is also required that the
solution y(u#) (which is a function of only u# because its boundary
conditions are independentof v) of Eq. (1) increases monotonically
over the range [0, 1]. From Eq. (4b) y(u) has a stationary point at
u =1, and for the function to be monotonically increasing over the
range [0, 1], this stationary point must either be a maximum turn-
ing point or a point of inflection. Thus, we require that y,,(1) =0,
whichreducesto s, <3y,.Finally,to avoid numericaldifficulties, the
smoothing parameter a is constrained to be greater than or equal to
unity.

The semispan wing is constrained to have a fixed plan area S,
which, for a =0 deg, can be evaluated directly (and, for small «,
can be approximated) using the formula

1 0
S= / yu(”)/ XV(M,V) dv du (5)
0 n

Subsonic Analysis

A low-orderpotential-flow panel method, known as PMARC, ' is
used to estimate the lift of the flying wing. Panel methods are based
on the assumptionthat, for high Reynolds number and attached flow
conditions, the regions of the flowfield dominated by viscous and
rotational effects are confined to thin boundary layers and wakes.
The remainder of the flowfield is assumed to be inviscid, irrotational,
and alsoincompressible. Thus, a velocity potential @ can be defined,
and the incompressible continuity equation reduces to Laplace’s
equation V2® =0. The solution of this equation yields an integral
equation for the velocity potential @ p, at any point P, expressed
in terms of an unknown distribution of sources o and doublets p
across the surface of the wing Sz and an unknown distribution of
doublets w1y across the surface of the wake Sy, as follows:

®P=L|:// [Jn'V(l)dSB"'KP”P
4 Sp—P r
S @) o]
Sp r Sw r

where the subscript Sg — P signifies that the point P is excluded
from the first surface integral and the value of the parameter K p
depends on where P lies with respect to the surface.!

Equation (6) must satisfy the Neumann boundary condition,
which states that the velocity component normal to the surface of
the wing Sp is zero. Also, because potential flow is irrotational, a
physically based condition must be introduced to fix the amount
of circulation and, equivalently, the amount of lift generated by the
wing. In PMARC the Kutta condition, which ensures that the ve-
locity at a wing’s trailing edge is finite, is used to fix the amount of
lift generated by the wing.

Even subject to the Neumann boundary and Kutta conditions,
an infinite number of source and doublet distributions will satisfy

Laplace’s equation,each of which yields the same external flowfield
but different fictitious flowfields within the interior of the wing. To
obtain a unique solution, PMARC sets the fictitious internal veloc-
ity potential equal to the onset velocity potential ¢, a condition
which is known as the internal Dirichlet boundary condition. The
source distribution o, which is the jump in the normal velocity com-
ponent on the surface of the wing Sp, can thus be determined using
the external Neumann and internal Dirichlet boundary conditions.
Substituting this source distribution into Eq. (6) when the point P
lies on the inner surface of the wing yields an integral equation to
be solved for the unknown doublet distributions ¢ and gy .

To obtain the unknown doublet distribution, the surfaces of the
wing and its wake are discretized into a number of quadrilateral
panels, upon each of which (because PMARC is a low-order panel
method) constant source and doublet strengths are assumed. The
PDE-generated wing considered here is easily discretized by uni-
formly subdividing the (¢, v) coordinate domain which, as a result
of the parameterization of the boundary conditions, conveniently
yields a greater density of panels in the regions of large pressure
variations (i.e., at the leading and trailing edges and also at the wing
tip—see Fig. 1).

The internal Dirichlet boundary condition is satisfied at control
points placed at the center of each of the wing’s surface panels. This
yieldsa setof linear simultaneousequations, which can be solved for
the unknown wing doublet strengths. The wake doublet strengths
are determined using the Kutta condition, which implies that the
circulation at the wing’s trailing edge must be zero and therefore
that the doublet strengths of the first row of wake panels should
cancel the combined doublet strengths of the two rows of wing pan-
els that form the trailing edge of the wing. Although PMARC has
the capability to time step wakes to a converged solution, in the
present application computational expense is reduced by shedding
the wake doubletstrengths down each streamwise column on a pre-
scribed wake surface that is carried 20 chord lengths downstream
(as recommended in Ref. 15).

Substituting the doublet and source strengths back into the dis-
cretized form of Eq. (6) yields the velocity potential at the control
pointofeach wing panel. The velocity componentsare then given by
the gradientof the velocity potentialfrom which the resultantspeeds
can be calculated. For steady flow the pressure coefficients of each
panel can then be calculated using Bernoulli’s equation, and, thus,
the resultant force contributions from each panel can be evaluated.
These force contributionscan be summed up panel by panel, to give
the resultantaerodynamicforce on the body. The lift L is the compo-
nentof this resultantforce perpendicularto the freestreamdirection,
and the section and total lift coefficients C; and C; are defined by

C=L[ipVic Co=L/ipV2s @)

Optimization and Constraints

The method of numerical minimization used in this paper is a
quasi Newton method. Such methods use gradient information to
search in descent directions for the minimum of an objective func-
tion. The direction of each line search is determined by minimizing
the second-order Taylor-series expansion of the objective function.
This involves evaluating or approximating both the gradient vec-
tor and the inverse Hessian matrix of the objective function. Quasi
Newton methods build up an approximation to the inverse Hessian
matrix, and the various different methods correspond to different
ways of approximating this matrix. The particular method used
in this paper is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method.!®

The flying-wing design problem is subject to two types of con-
straints: linear inequality constraints (the parameter bounds) and an
equality constraint (the fixed plan area). The parameter bound in-
equality constraints are satisfied using an active set method.!” If,
during a line search, a parameter exceeds one of its bounds, the
search is backtrackedto satisfy this bound constraintexactly. If this
pointis accepted as the solution of the line search, this parameter is
then set equal to the value of its active bound and thus eliminated
from the search. At the end of the optimization, each active bound
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Fig. 2 Variation of the coefficient of lift along a feasible slice of the
design space.

constraint must be checked to ensure that it has remained active.
If one (or more) of the active bound constraints is invalid (i.e., if
a feasible perturbation yields a decrease in the objective function),
then the parameter correspondingto the invalid bound constraint (or
the one which is the most invalid) is returned to the problem and
the optimization restarted. This process continues until all active
constraints are valid.

The plan area equality constraint is satisfied using a sequential
penalty function method. Penalty function methods satisfy con-
straints by penalizing constraint violations. This entails adding a
smoothly rising penalty term to the objective function when con-
straints are violated. For a strong penalty function this results in a
steep-sided valley, which is well known for being difficult to min-
imize because the line searches tend to tack along the valley floor.
The penalty functionis therefore applied sequentially, starting with
a weak penalty and then gradually increasingits strength. The solu-
tion of each penalty function provides a new starting point, which
should be nearby to the solution of the next penalty function.

Discussion of Noise

Initially, the flying-wing design problem was attempted by di-
rectly coupling the BFGS method of optimization with the panel
method PMARC and approximating the gradient vector of the ob-
jective function (i.e., the lift) using finite differences. However, un-
satisfactory results were obtained. This prompted an investigation
into the design space, and it was discoveredthatthe lift data obtained
using PMARC are noisy. This noise results in a jagged objective
function that contains many spurious noise-induced local maxima.
It was hoped that finite difference intervals that were large enough
to span the scale of the noise would enable more successful results.
Unfortunately, however, the results were still unsatisfactory.

Figure 2 illustrates the variation of the coefficient of lift along
a feasible slice of the design space. The optimization process was
becoming trapped in plateau regions of the feasible design space
where the variation of the lift is small relative to the amplitude of
the noise. In such regions, even with the choice of relatively large
finite difference step lengths, the finite difference approximations
yield erroneous search directions that handicap the progress of the
optimizer and cause it to converge prematurely to spurious noise-
induced maxima.

Response Surface Methodology

Response surface methodology (RSM) is a collection of math-
ematical and statistical techniques for solving problems in which
the goal is to optimize the response y of a system or process that is
influenced by n independent variables X =(X, X», ..., X,) andis
subject to observational errors.'®

A response surface is a smooth analytic function that repre-
sents the true functional relationship between the expected or
mean value 1 of the response and its n independent variables
X =(Xy, X5, ..., X,). Usually, because this relationship is not
known, the assumption is made that it can be approximated locally
by a second-order polynomial of the form

fX,B) =p + Xn:ﬂixi + Xn:Zﬂi,inXj (8)

i=1 i=1j=1
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Fig. 3 Central composite designs for two and three design variables.

where f3, B;, and B;; are unknown polynomial coefficients orregres-
sion parameters and Eq. (8) is referred to as a regression equation.

Estimates of the regression coefficients By, i, and f3;; can be
made by fitting Eq. (8) to the response surface values observed at
a set of data points. Equation (8) has (n + 1)(n + 2)/2 unknown
regression parameters, and in order to estimate these, at least an
equal number of data points is required. The quality of the fitted
response surface increases as the number of data points increases.
Also, the condition number, i.e., the ratio of the highest eigenvalue
to the lowest, of the least-squares matrix decreases as the number of
data pointsincrease (as is desirable to avoid near-singularmatrices).
However, to maintain low computational costs, the total number of
response evaluations should be kept reasonably low.

A further consideration in the choice of data points is their dis-
tribution: a poor distribution can have a profound effect upon the
fidelity of the fitted response surface. To choose suitable distribu-
tions of data points, RSM uses methods from the statistical design
of experiments.'®

Classes of designedexperiments, which were devised specifically
for fitting second-orderresponse surfaces, are the central composite
designs. These designs consist of a 2"-factorial design augmented
by 2n axial or star points and n, center points. A (full) factorial
design is one that uses every possible combination of the chosen
levels (values) of each factor (independent variable). If each of the
independent variables are scaled such that the 2" factorial or cube
points can be coded by (x1, %=1, ..., £1), then each of the 2n star
points lie at a coded distance o from the center (0, O, .. ., 0) of the
factorial design. Therefore, the response is evaluated at five levels
of each variable,coded by (—a, —1, 0, 1, @), as illustratedin Fig. 3,
which shows the central composite designs for two and three design
variables. The number n, of center points can be used to control
various properties of the central composite design; in this paper n,
is set to unity.

Because the purpose of RSM is optimization and the location of
that optimum is not known prior to performing the experiment, it is
sensible to use an experimental design that provides equal precision
in all directions. Such an experimental design is said to be rotatable
and yields a predicted response whose variance, at a point X, is a
function of only the distance of that point from the design’s center
point and not the direction. The central composite designs used in
this work can be made rotatable by selecting the value of a to be
(2n)1/4.

Estimates of the regressionparameters 3 are obtained by perform-
ing a least-squaresfit of the regressionEq. (8) to the response values
obtained at each of the data points defined by the central composite
design. The least-squares problem is solved using singular value
decomposition.!®

Itis important to check whether the tentatively assumed response
surface model is an adequate approximation of the data. A measure
of the modeling capabilities of the response surface is given by the
residual mean square (RMS):

Y Ok = )2
N-M

RMS = ©
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where the residual is defined as the difference between the re-
sponse values y, and the corresponding values predicted by the
fitted response surface ;. The terms M and N are the number of
unknownparametersand the numberof responseevaluations[which
are equalto (n + 1)(n + 2)/2 and 2" + 2n + 1 for the second-order
polynomial and the central composite design, respectively]. The
RMS contains two sources of variation: a contribution caused by
the experimental (or numerical) error, known as the pure error sum
of squares, which makes the values of y deviate from the true or
expected response, and a contribution caused by the failure of the
model torepresentthe correctform of the responsesurface variation,
known as the lack of fit sum of squares. Because the response (i.e.,
lift) in this paper is evaluated deterministically and the numerical
error for each evaluation will be the same for each replication, an
estimate of the variance caused by the error is not possible. Never-
theless, a small value of the RMS with respect to the total variation
of the response values obtained using the central composite design
can be considered to indicate an adequate fit.

Optimization Using Sequential Response Surfaces

A second-order response surface is unlikely to provide an ade-
quate approximation of the objective function over a large region
of design space. Therefore, a sequential approach is used in which
smallerand smaller subregionsof the design space are approximated
such that convergence to an optimal design is achieved. To perform
this sequential response surface optimization process, a strategy
similar to those of Refs. 19 and 20 is used. The size and location of
each subregion depends on where the optimal point of the previous
subregion lies with respect to the boundaries of both that subregion
and the entire search region. Figure 4 illustrates a contrived example
of a sequence of search subregions for a two-dimensional problem.
In this figure the thin and thick lines define the parameter bound
constraints of the search subregions and the entire search region,
respectively, whereas the increasing numbers in the top left-hand
corner of each rectangle correspond to each subsequentsearch sub-
region and the numbered stars represent the optimal points of those
subregions.

If the optimal pointof a subregionhas any active parameter bound
constraints (that are not coincident with those of the entire region),
as for the optimal point of subregion 1, then the subregion lies in a
nonoptimalregionofthe parameterspace. The subsequentsubregion
is obtained by projectingthe previoussubregion,withoutareduction
insize, in the directionindicated by the optimal point of the previous
region such that it becomes adjacent to the previous subregion, as
for subregion2. If, however, the optimal point lies in the interior of
the previous subregion, i.e., all of the subregion-bound constraints
of the optimal pointare inactive, as for the optimal point of region 2,
then that point is regarded as an approximation of the true optimal
point, and the nextsubregionis centeredaboutthat optimal pointand
also reduced in order to converge toward that optimal point, as for
subregion 3. In the Fig. 4, scenario this has resulted in a subregion

that evades the bound constraints of the entire search region (as
indicated by the dashed lines). In such an event, the subregion is
projectedback into the feasible parameter space along the directions
of those parameters for which the bound constraints of the entire
search region are violated.

There are two further possibilities for the size specification of a
subsequent subregion. These arise when one or more of the active
subregion parameter bound constraints are coincident with those
parameter bound constraints of the entire search region (as for the
optimal points of subregions 3 and 4). Firstly, if some of the remain-
ing subregion bound constraints of the previous optimal point are
active (as for the optimal point of subregion 3), then the size of the
subregion is reduced only in those parameters that are constrained
to the bounds of the entire search region, as for subregion 4. Al-
ternatively, if all of the remaining subregion bound constraints of
the previous optimal point are inactive (as for the optimal point of
subregion4), then the optimal pointis again regarded as an approxi-
mation to the true optimal point, and the entire subregionis reduced,
as for subregion 5, to enable convergence to an optimal point that
lies on the boundary of the entire search region.

Finally, to avoid the range of the observed response values be-
coming too small relative to the range of the noise, and thereby
corrupting the fitted response surface, a minimum range is specified
for each parameter beyond which no further reductions are permit-
ted. This iterative process continues until it either converges to an
optimal point or a maximum number of permitted response surface
constructions have been performed.

Combined Design Approach

The components of the design approachused in this paper are the
PDE method of surface parameterization;the panel method PMARC
for subsonicanalysis;the central compositeexperimentaldesignand
RSM; the BFGS quasi Newton method of optimization; and, finally,
the sequential penalty function and active set methods of constraint
satisfaction.

The first of these components,the PDE method, is used to describe
the geometry of a baseline flying wing in terms of a number of
parameters. Four of these parameters are chosen to be varied in
the design process, whereas the remaining are fixed. The baseline
wing is then considered to be the center point of a central composite
design that spans some chosen subregion of the flying wing’s design
space. The coefficients of lift of this baseline flying wing and those
flying wings correspondingto the cube and star points of the central
compositedesignare then estimated using PMARC. A second-order
response surface is fitted to this lift data, which is then optimized
globally using the BFGS quasi Newton method (and a number of
alternative starting points) subjectto the wing’s plan area constraint
and the parameter bound constraints of the subregion of the design
space. During this optimization, the plan area constraintis satisfied
using the sequential penalty functionmethod, whereas the parameter
bound constraints are satisfied using the active set method. Each of
the optimal points of this response surface is then used to select
smaller subregions as starting points for the strategy described in
the preceding section.

Results

To recap, the wing design parameters that are allowed to vary in
the optimization process are the sweep parameter x,, the derivative
boundarycondition parameters s, and s,, and, finally, the smoothing
parameter a. The first problem considered is the design of a wing
that is uncambered and untwisted (i.e., with ¢ =0 and o =0 deg).
(The remaining fixed parameters are given the same values as for
the baseline flying wing.) To generate lift, the wing is set to an angle
of attack of 5 deg.

An initial response surface is used to approximate the coefficient
of lift over a large region of the design space. The RMS of this
initial response surface is 8.156 X 10~°, whereas the total variation
of the coefficient of lift data obtained using the central composite
design is 0.2732. The small value of the RMS compared to the
total variation of the coefficient of lift indicates that a reasonable
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Fig. 5 Contour plot of the variation of the coefficient of lift with s,
and s;, where x; = 0.0 and the plan area constraint is satisfied by the
elimination of a.
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Fig. 6 Contour plot of the variation of the response surface with s, and
s¢, where x; = 0 and the plan area constraint is satisfied by the elimination
of a.

approximationof the coefficient of lift data has been obtained using
the second-order regression equation. The quality of this response
surface approximation can also be judged by comparing Fig. 5,
which illustrates the variation of the coefficient of lift with respect
to the design parameters s, and s, (where the sweep parameter x;
has been set to zero and the plan area constraint is satisfied by
the elimination of the smoothing parameter a), with Fig. 6, which
illustratesthe variation of the response surface over the same domain
of feasible parameter space. (Figure 5 shows the jagged contour
lines in the regions where the variation of the lift is small and, also,
the troublesome plateau region surrounding the saddle point in the
lower left-hand quadrant.) Although, over such a large region, the
response surface cannot be expected to exhibit the same variation
as the coefficient of lift, some of the local features are actually
represented remarkably well. In particular, the local maximum in
the lower left-hand corner of these two figures has been identified
almost exactly.

The optimization of the initial response surface yields three op-
timal points, which, apart from the value of x,, correspond to the
local maximum in the lower left-hand corner and those in the up-
per and lower right-hand corners of Fig. 6. The sequential response
surface optimization, initiated from the optimal point in the lower
left-hand corner, converges to the nearby true locally maximal solu-
tion. However, it can be seen from Fig. 5 that this is not the globally
maximal point which is sought. The sequential response surface
optimizations initiated from the other two optimal points yield ap-

proximately the same final design, which, again apart from the value
of x,, correspond to the true global maximum of Fig. 5. The best of
these two final designs has the following parameter values:

x, =1.502 s, =30.0 s, = 58.604 a =5.482
and has similar response surface and coefficient of lift values, which,
when rounded off to four decimal places, are both equal to 0.3865.

Figure 7 illustratesthis final untwisted flying-wing design. A prin-
cipal and perhaps surprising feature of this final design is its flared
wing tips. However, these flared wing tips do bear some similarity
to wing tip endplates or the more sophisticatedwinglet.?! The phys-
ical mechanism by which a wing generates lift is the existence of a
higher pressure on its lower surface and a lower pressure on its upper
surface. At the wing tips this net pressure imbalance forces the air
to flow around the tips from the higher pressure region below to the
lower pressure region above and thereby reduces the lift near the tip.
This tendency for the flow to leak around the wing tips also creates
a swirling motion that trails behind the wing tips, i.e., a wing-tip
vortex. These wing-tip vorticesresultin a lift dependentcomponent
of drag, known as induced drag, and, more relevant to the present
design criterion, a further reductionin the lift of the wing. Endplates
are vertical plates that are mounted at the tips of the wing and pre-
vent the air from curling around the tips. This increasesthe effective
span of the wing, allowing significant lift to extend further toward
the wing tips and also reduces the induced drag. Winglets are a far
more advanced version of the simple endplate that are twisted and
cambered in order to create a forward component of lift, which acts
as a negative drag.

To reduce computational expense, the wakes used in the present
implementation of PMARC were prescribed rather than being al-
lowed to develop to a converged solution. Therefore, the trailing
wing-tip vortices are not modeled with sufficient accuracy to pre-
dict the effects that changes in the shape of the wing tip have upon
them. Nevertheless, it is reasonable to postulate that the presence
of the flared wing tips would provide a greater barrier to the flow
around the tip than would be provided by, for example, a rounded
tip.

Figure 8 illustrates the spanwise variation of the coefficient of lift
of both this final untwisted and the baseline flying-wing designs.
The section coefficient of lift actually increases in the spanwise
direction. This is achieved by the aft sweep of the wings, which

Fig. 7 Best final design of the untwisted flying-wing design problem.
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Fig. 8 Spanwise variation of the section coefficients of lift of the best
final design of the untwisted flying-wing design problem.
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diverts the flow outboard. It appears, therefore, that the flared wing
tips create a sheltered region where this diverted flow is harnessed
and able to create greater section coefficients of lift.

To investigate the effect that alternative aerofoil boundary condi-
tions will have on the design of a flying wing, the camber ¢ of the
root aerofoil boundary condition is set to 0.02. With these modi-
fied boundary conditions the initial response surface has a RMS of
4.444 x107*, and the total variation of the lift values obtained using
the central composite design is 4.559. These values again indicate
a reasonable fit of the second-order polynomial to the coefficient
of lift data. The optimization of this initial response surface yields
two optimal points from which to initiate the sequential response
surface optimizations. The optimizations from these two optimal
points converge to approximately the same final wing designs; the
best of which has the following parameter values:

x, =1.686 s, =25.154 s, =0.000 a =1.000

and response surface and coefficient of lift values of 0.6602 and
0.6585, respectively. In contrastto the preceding wing design prob-
lem, where both s, and a attained relatively large values, in the
present problem they have both reached their minimum permitted
values. This is not surprising. Because the cambered root aerofoil
now generates more lift than the symmetric tip aerofoil, the tip
boundary conditions naturally reduce in magnitude and therefore
allow the root boundary conditions to propagate further along the
span of the wing. This final wing design, which is illustrated in
Fig. 9, appears more conventional than the earlier untwisted flying-
wing design.

The designproblemis now extended furtherby settingthe value of
o at the wing-tipboundary conditionto be —5 deg such that the wing
has washout. The RMS of the initial response surface approximation
is 7.217 X 1074, and the total range of the coefficient of lift values
obtained using the central composite design is 0.5537. As for the
cambered wing design problem, two optimal points were obtained
from the optimization of this initial response surface, which both
subsequently converged to similar final flying-wing designs. Not
surprisingly, these final twisted wing designs are similar to those
obtainedin the cambered flying-wing design problem. The best final
twisted flying wing, which is illustrated in Fig. 10, has the following
parameter values:

x, =2.196 s, =25.513 s, =0.000 a =1.000

and response surface and coefficient of lift values of 0.6308 and
0.6432, respectively. The value of the sweep parameter x, is ap-
preciably greater for this design than for the cambered flying-wing
design. Figure 11 illustrates the spanwise variation of the section
coefficients of lift of the final cambered and final twisted flying-
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Fig. 9 Best final design of the cambered flying-wing design problem.
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Fig. 10 Best final design of the twisted flying-wing design problem.
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Fig. 11 Spanwise variation of the section coefficients of lift of the best
final designs of the cambered and twisted flying-wing design problems.

wing designs. In both the cambered and twisted final wing designs,
the sweep back of the wings diverts the flow outboard and enables
significant lift to propagate further along the span.

Conclusions

An approach for optimal aerodynamic design, which is both ef-
ficient and robust, has been illustrated. This approach implements
two innovative approachesto aerodynamic design, namely the PDE
method and RSM. The PDE method’s ability to parameterize com-
plex surfacesin terms of a small number of shape parametersenables
the computationalexpense of numerical optimizationto be dramati-
callyreduced, whereas the implementationof techniquesfrom RSM
combats the inefficacy stemming from noisy lift data.

This design approach was applied successfully to three flying-
wing design problems in each of which the aim is to maximize the
wing’s subsoniclift while maintaining a fixed plan area. The first of
these was the design of an untwisted wing with symmetric root and
tip aerofoils. An interesting final untwisted flying-wing design was
obtained that had endplate-like buffers at its tips. This flying-wing
design illustrates that there is sufficient scope in the surface param-
eterization for a wide range of shapes. More conventional wings
were obtained when root camber and washout were introduced. The
absence of the wing-tip buffers in these two design problems arises
becausetherootaerofoils generatemore lift than the tip aerofoilsand
result, therefore, in a reduction of the wing-tip derivative boundary
conditions.
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